An Intelligent Modular Student Desk

Prinianakis, A., Stefanidi, H., Leonidis, A., Korozi, M., Katzourakis, A., Stamatakis, E. and Antona, M. (2021) An Intelligent Modular Student Desk 15th International Technology, Education and Development Conference

Abstract

With the emergence of the Ambient Intelligence (AmI) paradigm, Intelligent Environments became a reality and have already permeated various domains of everyday life such as work, health, entertainment and education. The Intelligent Classroom of ICS-FORTH, adheres to the human-oriented nature of AmI environments -whose primary goal is to satisfy the needs of the people living in them- and features a collection of interdependent technologically-enhanced artefacts (i.e., desk, teacher’s workstation, whiteboard) that are capable of exchanging information and communicating with each other, offering a unified interaction experience. The student’s desk is a key classroom artefact, where students spend most of their class time, so this work aspiring to enhance their daily educational activities introduces an Intelligent Desk, namely modDesk, featuring a modular design. Its construction allows customizable surfaces to be added or removed on demand, so as to support the specific and different needs of each course. Considering that related studies recommend to equip students with a display along with an appropriate input method as it would be beneficial for the educational process, the surfaces of modDesk feature built-in monitors and input devices, but also enable students to connect their handheld devices (e.g., Smartphones, Tablets). Via sophisticated mechanisms the desk identifies any external devices that are docked to its surface or that are in close proximity, and determines the capabilities they offer. Based on the identified capabilities, modDesk adapts to offer better support to the student. This new generation desk aims to further increase students’ engagement and motivation, providing hands-on experience and offering personal study spaces featuring specialized equipment.

GRETA: Pervasive and AR Interfaces for Controlling Intelligent Greenhouses

Bekiaris, I., Leonidis, A., Korozi, M., Stratakis, C., Zidianakis, E., Doxastaki, M. and Stephanidis, C. (2021) GRETA: Pervasive and AR Interfaces for Controlling Intelligent Greenhouses The 17th International Conference on Intelligent Environments (IE2021) will be held in Dubai, United Arab Emirates at Middlesex University Dubai from June 21 – June 24, 2021.

Abstract

Abstract— Considering the prevalence of Ambient Intelligence, this work aims to enhance the interaction between farmers and Intelligent Environments, in order to support their various daily Agricultural activities, aspiring to improve the quality and quantity of cultivated species. Towards this direction, the Greta system was designed and developed, following a user-centered design process, permitting farmers/agronomists to easily monitor and control an Intelligent Greenhouse via a set of useful and usable applications. Greta offers a progressive web app (PWAs) targeting PCs, handheld devices, and technologically-enhanced artifacts of Smart Homes, while it also delivers an Augmented Reality application that visualizes the greenhouse’s interior conditions in a sophisticated manner, and provides context-sensitive assistance regarding cultivation activities. In more detail, the system interoperates with the ambient facilities of an Intelligent Greenhouse allowing end-users to: monitor the conditions inside the greenhouse, remotely control the state of various actuators, be notified regarding the available/active automations, be aware of the optimal conditions for their plants to grow and receive relevant guidelines, be informed regarding any diseases, and communicate with experts for receiving treatment advice. This work describes the design methodology and functionality of Greta, and documents the results of a series of expert-based evaluation experiments.

Integrating Ambient Intelligence Technologies for Empowering Agriculture

Stratakis, C., Stivaktakis, N., M., Bouloukakis, M. Leonidis, A., Doxastaki, M., Kapnas, G., Evdaimon, T., Korozi, M., Kalligiannakis, E. and Stephanidis, C. (2021) Integrating Ambient Intelligence Technologies for Empowering Agriculture 13th EFITA International online Conference

Abstract

This work blends the domain of Precision Agriculture with the prevalent paradigm of Ambient Intelligence, so as to enhance the interaction between farmers and Intelligent Environments, and support their various daily Agricultural activities, aspiring to improve the quality and quantity of cultivated plants. In this paper, two systems are being presented, namely the Intelligent Greenhouse and the AmI seedbed, targeting a wide range of agricultural activities starting from planting the seeds, caring each individual sprouted plant up to their transplantation in the greenhouse, where the provision for the entire plantation lasts until the harvesting period.

CognitOS Board: A Wall-Sized Board to Support Presentations in Intelligent Environments

Leonidis, A., Korozi, M., Nikitakis, G., Ntagianta, A., Dimopoulos, A., Zidianakis, E., Stephanidi, E. & Antona, M. (2020) CognitOS Board: A Wall-Sized Board to Support Presentations in Intelligent Environments Technologies 2020, 8(4), 66

Abstract

The proliferation of Internet of Things devices and services and their integration in everyday environments led to the emergence of intelligent offices, classrooms, conference, and meeting rooms that adhere to the paradigm of Ambient Intelligence. Usually, the type of activities performed in such environments (i.e., presentations and lectures) can be enhanced by the use of large Interactive Boards that—among others—allow access to digital content, promote collaboration, enhance the process of exchanging ideas, and increase the engagement of the audience. Additionally, the board contents are expected to be plenty, in terms of quantity, and diverse, in terms of type (e.g., textual data, pictorial data, multimedia, figures, and charts), which unavoidably makes their manipulation over a large display tiring and cumbersome, especially when the interaction lasts for a considerable amount of time (e.g., during a class hour). Acknowledging both the shortcomings and potentials of Interactive Boards in intelligent conference rooms, meeting rooms, and classrooms, this work introduces a sophisticated framework named CognitOS Board, which takes advantage of (i) the intelligent facilities offered by the environment and (ii) the amenities offered by wall-to-wall displays, in order to enhance presentation-related activities. In this article, we describe the design process of CognitOS Board, elaborate on the available functionality, and discuss the results of a user-based evaluation study.

The CongitOS Classboard: Supporting the teacher in the Intelligent Classroom

Nikitakis, G., Ntagianta, A., Korozi, M., Leonidis, A., Antona, M., Stephanidis, C. (2020) The CongitOS Classboard: Supporting the teacher in the Intelligent Classroom 14th annual International Technology, Education and Development Conference, At Valencia

Abstract

In the domain of education, an Intelligent Classroom that employs Ambient Intelligence technologies can not only improve learning and student performance, but also support educators with the various educational tasks, such as lecturing, course preparation and classroom management. Given that the board is one of the key artifacts of any classroom, using technology to enhance it offers students and educators rich opportunities by providing access to a wide range of applications, capturing and maintaining a simultaneous focus of attention for large learner groups, supporting collaboration and encouraging discussion. To this end, this work presents the CognitOS Classboard, an educator- and student- oriented framework, employed on the “Intelligent Classroom Board” - a wall-to-wall projected interactive board- offering a variety of tools and applications aiming to support lecturing and enhance the learning process. Aiming to create highly engaging and fascinating learning experiences for the students, the CognitOS Classboard apart from offering access to useful educational applications, features sophisticated mechanisms that can transform the classroom into an immersive environment on demand. It supports multimodal interaction through touch, mid-air gestures, voice commands, and user position tracking, while a tablet and a desktop application were developed for permitting the management and overview of the board. This paper reports the functionality of the “CognitOS Classboard” and the findings of an evaluation experiment conducted with User Experience experts.

The LECTOR Podium – An innovative Teacher Workstation for the intelligent Classroom of the Future

Stefanidi, E., Korozi, M., Leonidis, A., Antona, M., & Papagiannakis, G. (2020) The LECTOR Podium – An innovative Teacher Workstation for the intelligent Classroom of the Future In the Proceedings of the 12th International Conference on Education Technology and Computers (ICETC 2020), London, UK, 23-26 October 2020.

Abstract

This paper explores a new approach to a teacher’s workstation in the context of the intelligent classroom of the 21st century. Nowadays, the term “intelligent” is not only associated with efforts to incorporate smart/mobile devices into the learning experience (distance learning, educational games/apps, etc.), but also to equip the physical environment of the classroom with technologically enhanced objects. These technologically augmented artefacts (Student Desk, Interactive Classroom Board and Educator’s Workstation) are embedded discreetly in the classroom’s environment. One of the main concerns in designing and developing such artefacts is to facilitate seamless interaction between educators and students, as well as to enable unobtrusive monitoring and supervision of the students by the educators. This paper presents LECTOR Podium, a system that liberates teachers from the confinement of a desk and introduces a flexible and empowering workstation in the form of a smart arm-chair. This arm-chair assumes the role of a control center, enabling the educator to monitor and operate every feature and artefact of the intelligent classroom.

A Multi-stage Approach to Facilitate Interaction with Intelligent Environments via Natural Language

Stefanidi, Z., Leonidis, A., Margherita, A. (2019) A Multi-stage Approach to Facilitate Interaction with Intelligent Environments via Natural Language A Multi-stage Approach to Facilitate Interaction with Intelligent Environments via Natural Language. In International Conference on Human-Computer Interaction, pp. 67-77. Springer, Cham, 2019.

Abstract

Due to the proliferation of Internet of Things (IoT) devices and the emergence of the Ambient Intelligence (AmI) paradigm, the need to facilitate the interaction between the user and the services that are integrated in Intelligent Environments has surfaced. As a result, Conversational Agents are increasingly used in this context, in order to achieve a natural, intuitive and seamless interaction between the user and the system. However, in spite of the continuous progress and advancements in the area of Conversational Agents, there are still some considerable limitations in current approaches. The system proposed in this paper addresses some of the main drawbacks by: (a) automatically integrating new services based on their formal specification, (b) incorporating error handling via follow-up questions, and (c) processing multiple user intents through the segmentation of the input. The paper describes the main components of the system, as well as the technologies that they utilize. Additionally, it analyses the pipeline process of the user input, which results in the generation of a response and the invocation of the appropriate intelligent services.

Ambient Intelligence in the Living Room

Leonidis, A., Korozi, M., Kouroumalis, V., Poutouris, E., Stefanidi, E., Arampatzis, D., Sykianaki, E., Anyfantis, N., Kalligiannakis, E., Nicodemou, V. C., Stefanidi, Z., Adamakis, E., Stivaktakis, N., Envdaimon, T., Antona, M. (2019) Ambient Intelligence in the Living Room Ambient Intelligence in the Living Room. Sensors 19, no. 22 (2019): 5011.

Abstract

The emergence of the Ambient Intelligence (AmI) paradigm and the proliferation of Internet of Things (IoT) devices and services unveiled new potentials for the domain of domestic living, where the line between “the computer” and the (intelligent) environment becomes altogether invisible. Particularly, the residents of a house can use the living room not only as a traditional social and individual space where many activities take place, but also as a smart ecosystem that (a) enhances leisure activities by providing a rich suite of entertainment applications, (b) implements a home control middleware, (c) acts as an intervention host that is able to display appropriate content when the users need help or support, (d) behaves as an intelligent agent that communicates with the users in a natural manner and assists them throughout their daily activities, (e) presents a notification hub that provides personalized alerts according to contextual information, and (f) becomes an intermediary communication center for the family. This paper (i) describes how the “Intelligent Living Room” realizes these newly emerged roles, (ii) presents the process that was followed in order to design the living room environment, (iii) introduces the hardware and software facilities that were developed in order to improve quality of life, and (iv) reports the findings of various evaluation experiments conducted to assess the overall User Experience (UX)

CasandRA: A Screenplay Approach to Dictate the Behavior of Virtual Humans in AmI Environments

Stefanidi, E., Leonidis, A., Partarakis N., & Zabulis, X. (2019) CasandRA: A Screenplay Approach to Dictate the Behavior of Virtual Humans in AmI Environments CasandRA: A screenplay approach to dictate the behavior of Virtual Humans in AmI Environments. In Proceedings of HCI International 2019 (21st International Conference on Human-Computer Interaction), (pp. 57-66), Springer CCIS 1088, Orlando, Florida, USA, 26-31 July.

Abstract

Intelligent Conversational Agents are already employed in different scenarios, both in commerce and in research. In particular, they can play an important role in defining a new natural interaction paradigm between them and humans. When these Intelligent Agents take a human-like form (embodied Virtual Agents) in the virtual world, we refer to them as Virtual Humans. In this context, they can communicate with humans through storytelling, where the Virtual Human plays the role of a narrator and/or demonstrator, and the user can listen, as well as interact with the story. We propose that the behavior and actions of multiple, concurrently active Virtual Humans, can be the result of communication between them, based on a dynamic script, which resembles in structure a screenplay. This paper presents CasandRA, a framework enabling real-time user interaction with Virtual Humans, whose actions are based on this kind of scripts. CasandRA can be integrated in any Ambient Intelligence setting, and the Virtual Humans provide contextual information, assistance, and narration, accessible through various mobile devices, in Augmented Reality. Finally, they allow users to manipulate smart objects in AmI Environments.

ParlAmI: A Multimodal Approach for Programming Intelligent Environments

Stefanidi E.; Foukarakis M.; Arampatzis D.; Korozi M.; Leonidis A.; Antona M. (2019) ParlAmI: A Multimodal Approach for Programming Intelligent Environments The PErvasive Technologies Related to Assistive Environments (PETRA). A special issue of Technologies (ISSN 2227-7080). Technologies 2019

Abstract

The proliferation of Internet of Things (IoT) devices and services and their integration in intelligent environments creates the need for a simple yet effective way of controlling and communicating with them. Towards such a direction, this work presents ParlAmI, a conversational framework featuring a multimodal chatbot that permits users to create simple “if-then” rules to define the behavior of an intelligent environment. ParlAmI delivers a disembodied conversational agent in the form of a messaging application named MAI, and an embodied conversational agent named nAoMI employing the programmable humanoid robot NAO. This paper describes the requirements and architecture of ParlAmI, the infrastructure of the “Intelligent Home” in which ParlAmI is deployed, the characteristics and functionality of both MAI and nAoMI, and finally presents the findings of a user experience evaluation that was conducted with the participation of sixteen users.

1 2 3