An Intelligent Modular Student Desk

Prinianakis, A., Stefanidi, H., Leonidis, A., Korozi, M., Katzourakis, A., Stamatakis, E. and Antona, M. (2021) An Intelligent Modular Student Desk 15th International Technology, Education and Development Conference


With the emergence of the Ambient Intelligence (AmI) paradigm, Intelligent Environments became a reality and have already permeated various domains of everyday life such as work, health, entertainment and education. The Intelligent Classroom of ICS-FORTH, adheres to the human-oriented nature of AmI environments -whose primary goal is to satisfy the needs of the people living in them- and features a collection of interdependent technologically-enhanced artefacts (i.e., desk, teacher’s workstation, whiteboard) that are capable of exchanging information and communicating with each other, offering a unified interaction experience. The student’s desk is a key classroom artefact, where students spend most of their class time, so this work aspiring to enhance their daily educational activities introduces an Intelligent Desk, namely modDesk, featuring a modular design. Its construction allows customizable surfaces to be added or removed on demand, so as to support the specific and different needs of each course. Considering that related studies recommend to equip students with a display along with an appropriate input method as it would be beneficial for the educational process, the surfaces of modDesk feature built-in monitors and input devices, but also enable students to connect their handheld devices (e.g., Smartphones, Tablets). Via sophisticated mechanisms the desk identifies any external devices that are docked to its surface or that are in close proximity, and determines the capabilities they offer. Based on the identified capabilities, modDesk adapts to offer better support to the student. This new generation desk aims to further increase students’ engagement and motivation, providing hands-on experience and offering personal study spaces featuring specialized equipment.

When Children Program Intelligent Environments: Lessons Learned from a Serious AR Game

Stefanidi, E., Korozi, M., Leonidis, A., Arampatzis, Antona, M., & Papagiannakis, G. (2021) When Children Program Intelligent Environments: Lessons Learned from a Serious AR Game In the Proceedings of the ACM Interaction Design and Children conference 2021 (IDC 2021), on-line, 26-30 June.


While the body of research focusing on Intelligent Environments (IEs) programming by adults is steadily growing, informed insights about children as programmers of such environments are limited. Previous work already established that young children can learn programming basics. Yet, there is still a need to investigate whether this capability can be transferred in the context of IEs, since encouraging children to participate in the management of their intelligent surroundings can enhance responsibility, independence, and the spirit of cooperation. We performed a user study (N=15) with children aged 7-12, using a block-based, gamified AR spatial coding prototype allowing to manipulate smart artifacts in an Intelligent Living room. Our results validated that children understand and can indeed program IEs. Based on our findings, we contribute preliminary implications regarding the use of specific technologies and paradigms (e.g. AR, trigger-action programming) to inspire future systems that enable children to create enriching experiences in IEs.

CognitOS Board: A Wall-Sized Board to Support Presentations in Intelligent Environments

Leonidis, A., Korozi, M., Nikitakis, G., Ntagianta, A., Dimopoulos, A., Zidianakis, E., Stephanidi, E. & Antona, M. (2020) CognitOS Board: A Wall-Sized Board to Support Presentations in Intelligent Environments Technologies 2020, 8(4), 66


The proliferation of Internet of Things devices and services and their integration in everyday environments led to the emergence of intelligent offices, classrooms, conference, and meeting rooms that adhere to the paradigm of Ambient Intelligence. Usually, the type of activities performed in such environments (i.e., presentations and lectures) can be enhanced by the use of large Interactive Boards that—among others—allow access to digital content, promote collaboration, enhance the process of exchanging ideas, and increase the engagement of the audience. Additionally, the board contents are expected to be plenty, in terms of quantity, and diverse, in terms of type (e.g., textual data, pictorial data, multimedia, figures, and charts), which unavoidably makes their manipulation over a large display tiring and cumbersome, especially when the interaction lasts for a considerable amount of time (e.g., during a class hour). Acknowledging both the shortcomings and potentials of Interactive Boards in intelligent conference rooms, meeting rooms, and classrooms, this work introduces a sophisticated framework named CognitOS Board, which takes advantage of (i) the intelligent facilities offered by the environment and (ii) the amenities offered by wall-to-wall displays, in order to enhance presentation-related activities. In this article, we describe the design process of CognitOS Board, elaborate on the available functionality, and discuss the results of a user-based evaluation study.

MagiPlay: An Augmented Reality Serious Game Allowing Children to Program Intelligent Environments

Stefanidi, E., Arampatzis, D., Leonidis, A., Korozi, M., Antona, M. & Papagiannakis, G. (2020) MagiPlay: An Augmented Reality Serious Game Allowing Children to Program Intelligent Environments MagiPlay: An Augmented Reality Serious Game Allowing Children to Program Intelligent Environments. In Transactions on Computational Science. Springer, 2020.


A basic understanding of problem-solving and computational thinking is undoubtedly a benefit for all ages. At the same time, the proliferation of Intelligent Environments has raised the need for configuring their behaviors to address their users’ needs. This configuration can take the form of programming, and coupled with advances in Augmented Reality and Conversational Agents, can enable users to take control of their intelligent surroundings in an efficient and natural manner. Focusing on children, who can greatly benefit by being immersed in programming from an early age, this paper presents an authoring framework in the form of an Augmented Reality serious game, named MagiPlay, allowing children to manipulate and program their Intelligent Environment. This is achieved through a handheld device, which children can use to capture smart objects via its camera and subsequently create rules dictating their behavior. An intuitive user interface permits players to combine LEGO-like 3D bricks as a part of the rule-based creation process, aiming to make the experience more natural. Additionally, children can communicate with the system via natural language through a Conversational Agent, in order to configure the rules by talking with a human-like agent, while the agent also serves as a guide/helper for the player, providing context-sensitive tips for every part of the rule creation process. Finally, MagiPlay enables networked collaboration, to allow parental and teacher guidance and support. The main objective of this research work is to provide young learners with a fun and engaging way to program their intelligent surroundings. This paper describes the game logic of MagiPlay, its implementation details, and discusses the results of a statistically significant evaluation conducted with end-users, i.e. a group of children of seven to twelve years old.

The CongitOS Classboard: Supporting the teacher in the Intelligent Classroom

Nikitakis, G., Ntagianta, A., Korozi, M., Leonidis, A., Antona, M., Stephanidis, C. (2020) The CongitOS Classboard: Supporting the teacher in the Intelligent Classroom 14th annual International Technology, Education and Development Conference, At Valencia


In the domain of education, an Intelligent Classroom that employs Ambient Intelligence technologies can not only improve learning and student performance, but also support educators with the various educational tasks, such as lecturing, course preparation and classroom management. Given that the board is one of the key artifacts of any classroom, using technology to enhance it offers students and educators rich opportunities by providing access to a wide range of applications, capturing and maintaining a simultaneous focus of attention for large learner groups, supporting collaboration and encouraging discussion. To this end, this work presents the CognitOS Classboard, an educator- and student- oriented framework, employed on the “Intelligent Classroom Board” - a wall-to-wall projected interactive board- offering a variety of tools and applications aiming to support lecturing and enhance the learning process. Aiming to create highly engaging and fascinating learning experiences for the students, the CognitOS Classboard apart from offering access to useful educational applications, features sophisticated mechanisms that can transform the classroom into an immersive environment on demand. It supports multimodal interaction through touch, mid-air gestures, voice commands, and user position tracking, while a tablet and a desktop application were developed for permitting the management and overview of the board. This paper reports the functionality of the “CognitOS Classboard” and the findings of an evaluation experiment conducted with User Experience experts.

The LECTOR Podium – An innovative Teacher Workstation for the intelligent Classroom of the Future

Stefanidi, E., Korozi, M., Leonidis, A., Antona, M., & Papagiannakis, G. (2020) The LECTOR Podium – An innovative Teacher Workstation for the intelligent Classroom of the Future In the Proceedings of the 12th International Conference on Education Technology and Computers (ICETC 2020), London, UK, 23-26 October 2020.


This paper explores a new approach to a teacher’s workstation in the context of the intelligent classroom of the 21st century. Nowadays, the term “intelligent” is not only associated with efforts to incorporate smart/mobile devices into the learning experience (distance learning, educational games/apps, etc.), but also to equip the physical environment of the classroom with technologically enhanced objects. These technologically augmented artefacts (Student Desk, Interactive Classroom Board and Educator’s Workstation) are embedded discreetly in the classroom’s environment. One of the main concerns in designing and developing such artefacts is to facilitate seamless interaction between educators and students, as well as to enable unobtrusive monitoring and supervision of the students by the educators. This paper presents LECTOR Podium, a system that liberates teachers from the confinement of a desk and introduces a flexible and empowering workstation in the form of a smart arm-chair. This arm-chair assumes the role of a control center, enabling the educator to monitor and operate every feature and artefact of the intelligent classroom.

BricklAyeR: A Platform for Building Rules for AmI Environments in AR

Stefanidi, E., Arampatzis, D., Leonidis, A. & Papagiannakis, G. (2019) BricklAyeR: A Platform for Building Rules for AmI Environments in AR BricklAyeR: A Platform for Building Rules for AmI Environments in AR. In Computer Graphics International Conference, Calgary, AB, Canada, 17-20 June (pp. 417-423). Springer, Cham, 2019.


With the proliferation of Intelligent Environments, the need for configuring their behaviors to address their users’ needs emerges. In combination with the current advances in Augmented and Virtual Reality and Conversational Agents, new opportunities arise for systems which allow people to program their environment. Whereas today this requires programming skills, soon, when most spaces will include smart objects, tools which allow their collaborative management by non-technical users will become a necessity. To that end, we present BricklAyeR, a novel collaborative platform for non-programmers, that allows to define the behavior of Intelligent Environments, through an intuitive, 3D building-block User Interface, following the Trigger-Action programming principle, in Augmented Reality, with the help of a Conversational Agent.

Learning analytics for ambient educational games targeting children with cognitive disabilities

A. Rigaki, M. Korozi, A. Leonidis, C. Stephanidis (2019) Learning analytics for ambient educational games targeting children with cognitive disabilities he 13th annual International Technology, Education and Development Conference, INTED2019, will be held in Valencia (Spain) on the 11th, 12th and 13th of March, 2019.


The concept of Ambient Intelligence (AmI) is already playing an important role in enriching the educational experience. Such technologies offer students increased access to information within an augmented teaching environment, which encourages active learning and collaboration, enhancing their motivation to learn. Research work in this domain includes the learner-centered design and implementation of infrastructure technologies, prototypes of intelligent systems and applications, smart artifacts for learning and serious games. “Home game” is an innovative augmented table-top educational game that combines tangible interaction with a virtual environment, falling under the category of serious games. The system is structured into a set of mini-games (such as ‘Locate the room’ and ‘Find the wrong object’), which can be personalized for each player in terms of content and interaction paradigm, either automatically based on their profile settings or manually by the educators. Home Game is deployed in the Rehabilitation Centre for Children with Disabilities in Heraklion, Crete, Greece. The full paper will contain a detailed presentation of the User Interface and the learning analytics data that are displayed in each student’s personal dashboards, so as to facilitate educators in adjusting the learning process according the needs of each student. Furthermore, the results of an expert-based evaluation of the tool will be reported.

Shaping the Intelligent Classroom of the Future

Korozi, M., Stefanidi, E., Samaritaki, G., Prinianakis, A., Katzourakis, A., Leonidis, A., & Antona, M. (2019) Shaping the Intelligent Classroom of the Future In International Conference on Human-Computer Interaction (pp. 200-212). Springer, Cham. Vancouver


This paper explores the general concept of the classroom of the future from a technological perspective, and proposes a set of indicative key facilities that such an environment should incorporate. Over the years, there has been an abundance of related research work aiming to build a “smarter” classroom, initially incorporating distance learning, educational games, and intelligent tutoring systems. More recently, many approaches have revolved around the advancements in the domains of Ambient Intelligence and Internet of Things, resulting in the enhancement of the traditional classroom equipment and furniture with processing power and interaction capabilities (e.g. intelligent desk, smart whiteboard) and the integration of emerging solutions in teaching and learning methods (e.g. AR, VR). The proposed intelligent classroom though is a holistic approach towards a student-centric educational ecosystem, which will incorporate state-of-the-art technologies to support (among others) alternative pedagogies, learning through immersive hands-on experiences and collaboration via flexible class layouts. To that end, this paper reports the various ambient facilities of the classroom and the accompanying software, while a prototype of this environment is currently under development in the AmI Facility of FORTH-ICS.

A Unified Working Environment for the Attention-aware Intelligent Classroom

Ntagianta, A., Korozi, M., Leonidis, A., & Stephanidis, C. (2018) A Unified Working Environment for the Attention-aware Intelligent Classroom In L. Gómez Chova, A. López Martínez, I. Candel Torres (Eds), Proceedings of the 10th International Conference on Education and New Learning Technologies (EDULEARN18), Palma, Spain, 2-4 July (pp. 4377-4387). Published by IATED Academy.
1 2 3 5