A Unified Working Environment for the Attention-aware Intelligent Classroom

Ntagianta, A., Korozi, M., Leonidis, A., & Stephanidis, C. (2018) A Unified Working Environment for the Attention-aware Intelligent Classroom In L. Gómez Chova, A. López Martínez, I. Candel Torres (Eds), Proceedings of the 10th International Conference on Education and New Learning Technologies (EDULEARN18), Palma, Spain, 2-4 July (pp. 4377-4387). Published by IATED Academy.

AmI Garden: building an IoT Infrastructure for Precision Agriculture

Bouloukakis, M., Stratakis, C., & Stephanidis, C. (2018, April) (2018) AmI Garden: building an IoT Infrastructure for Precision Agriculture Ercim News, Special Theme: Smart Farming, 113, 18-19.

Abstract

ICS-FORTH has recently initiated AmI-Garden, a smart farming project in the framework of its Ambient Intelligence Research Programme. A small experimental IoT greenhouse has been constructed and equipped with polycarbonate cover sheets and all the necessary infrastructure and hardware (automatic window-roof opening/closing, sliding door, fan installation for heating/cooling, vegetable breeding lamps etc.). Inside the greenhouse, a network of wireless sensors is used to measure environmental conditions and parameters, such as air/soil temperature and moisture, sunlight level, soil conductivity, quality and level of chemical ions in irrigation water, etc. The sensors communicate through IoT gateways to the greenhouse’s data centre for storage and post-processing. The system comes with pre-installed agricultural scenarios, a set of activity flows based on environmental conditions that are ideal for each plant species and are monitored in the greenhouse as explained above. The scenarios currently contain parameters to predict common diseases of the plants, as well as unexpected changes in the greenhouse’s microclimate. For example, the irrigation process is built as an agricultural scenario using data from current plant status and past data in order to establish the optimal amount of water to irrigate. The parameters of this scenario are based on specific plant breed and environmental variables. The intelligence behind the scenarios is based on critical limits and thresholds to create cultivation rules. On top of this rule based process, event-driven activation of various automations in the greenhouse is provided, for example, automatic humidity/temperature control, soil fertilisation (hydro fusion) and precise irrigation. Various sets of raw data are produced and ingested into the system, as the life cycle of each one of the plants evolves, in order to be used as the main input for the system’s actuations based on the agricultural treatment scenarios.

BubbleFeed: Visualizing RSS Information in Public Spaces

Karouzaki, E., Partarakis, N., Antona, M., & Stephanidis, C. (2018) BubbleFeed: Visualizing RSS Information in Public Spaces In Interactivity, Game Creation, Design, Learning, and Innovation (pp. 151-161). Springer, Cham.

Abstract

Public interaction displays contribute to upgrading the quality of public spaces since they attract many users and stimulate social interaction. In this paper, BubbleFeed is presented, a system for visualizing RSS news from multiple sources in public spaces. RSS news headlines are displayed inside virtual interactive bubbles ascending from the bottom of a vertical screen to the top, resembling the bubbles formed in a glass of soft drink. Besides touching the bubbles to expand and read the respective news stories, playful user interaction is supported to promote better engagement and motivate multiple users to participate. To support custom news feeds and Facebook posts in addition to RSS feeds, we have built a tool and a library that produce RSS files from the respective sources. BubbleFeed also supports displaying weather information, hosting media galleries and providing useful information such as Wi-Fi hotspot maps.

CognitOS: A Student- Centric Working Environment for an Attention-Aware Intelligent Classroom

Ntagianta, A., Korozi, M., Leonidis, A., Antona, M., & Stephanidis, C. (2018) CognitOS: A Student- Centric Working Environment for an Attention-Aware Intelligent Classroom In C. Stephanidis (Ed.), HCI International 2018 - Posters Extended Abstracts, Part II, Volume 29 of the combined Proceedings of HCI International 2018 (20th International Conference on Human-Computer Interaction), Las Vegas, Nevada, USA, 15-20 July (pp. 102-110). Switzerland: Springer International Publishing AG (CCIS 852).

Abstract

The emergence of Intelligent Classrooms, and in particular classrooms equipped with facilities for identifying the students’ attention levels, has raised the need for appropriate student-friendly tools that not only facilitate application hosting, but also acts as the means to re-engage inattentive students in the educational process. This work presents CognitOS, a web-based working environment that hosts several types of applications (i.e., exercises, multimedia viewer, digital book) that are utilized as channels to present interventions dictated by the intelligent decision-making mechanisms of the attention-aware classroom. This paper presents the functionality of CognitOS and the design process followed for its development.

Educator-Oriented Tools for Managing the Attention-Aware Intelligent Classroom

Stefanidi, E., Korozi, M., Leonidis, A., Doulgeraki, M., & Antona, M. (2018) Educator-Oriented Tools for Managing the Attention-Aware Intelligent Classroom In the Proceedings of the Tenth International Conference on Mobile, Hybrid, and On-line Learning (eLmL 2018), Rome, Italy, 25-29 March 2018 (pp. 72-77). IARIA.

Abstract

The emergence of Intelligent Classrooms and in particular classrooms that are equipped with appropriate infrastructure for identifying the students’ attention levels, has raised the need for appropriate educator-friendly tools that facilitate monitoring and management of these educational environments. This paper presents two such systems: LECTORviewer and NotifEye. LECTORviewer is deployed on the educator’s personal workstation and offers an overview of the students’ attention levels. Additionally, through its intuitive user interface, educators can provide their input regarding ambiguous behaviors or scheduled interventions that aim to reengage distracted, tired or unmotivated students to the educational process. NotifEye is a smart watch application for educators that aims to communicate, in a mobile fashion, important events occurring during a lesson (e.g., 60% of students are tired). This work presents the functionality of these tools and the usability findings of a heuristic evaluation experiment conducted with UX experts for LECTORviewer.

Interacting with augmented paper maps: a user experience study

Margetis, G. Ntoa, S., Antona, M., Stephanidis, C. (2017) Interacting with augmented paper maps: a user experience study 12th biannual Conference of the Italian SIGCHI Chapter (CHITALY 2017). 18th -20th September, Cagliari, Italy.

Abstract

This paper presents a user experience study of interaction with printed maps for providing digitally augmented tourism information. The Interactive Maps system has been implemented based on an interactive printed matter framework which provides all the necessary components for developing smart applications that offer printed matter interaction, and has been deployed and evaluated in the context of the publicly available Tourism InfoPoint of the Municipality of Heraklion. The results of the evaluation highlight that interacting with digitally augmented paper is quite easy and natural, while the overall user experience is positive.

LECTOR: towards reengaging students in the educational process inside smart classrooms

Korozi, M., Leonidis, A., Antona, M., & Stephanidis, C. (2017) LECTOR: towards reengaging students in the educational process inside smart classrooms In International Conference on Intelligent Human Computer Interaction (pp. 137-149). Springer, Cham.

Abstract

This paper presents LECTOR, a system that helps educators in understanding when students have stopped paying attention to the educational process and assists them in reengaging the students to the current learning activity. LECTOR aims to take advantage of the ambient facilities that “smart classrooms” have to offer by (i) enabling educators to employ their preferred attention monitoring strategies (including any well-established activity recognition techniques) in order to identify inattentive behaviors and (ii) recommending interventions for motivating distracted students when deemed necessary. Furthermore, LECTOR offers an educator friendly design studio that enables teachers to create or modify the rules that trigger “inattention alarms”, as well as tailor the intervention mechanism to the needs of their course by modifying the respective rules. This paper presents the rationale behind the design of LECTOR and outlines its key features and facilities.

LECTORstudio: creating inattention alarms and interventions to reengage the students in the educational process

Korozi, M., Antona, M., Ntagianta, A., Leonidis, A., & Stephanidis, C. (2017) LECTORstudio: creating inattention alarms and interventions to reengage the students in the educational process In Proceedings of the 10th Annual International Conference of Education, Research and Innovation.

Abstract

It is almost inevitable that during a course, students will get distracted either by internal or external stimuli. Introducing engaging activities into the main lecture and changing pedagogies within a class period has remarkable effects on students' concentration levels. This paper presents LECTORstudio, an authoring tool that enables educators to build the logic that guides the decision-making mechanisms of LECTOR, a framework capable of identifying inattentive behaviors and intervening to re-engage students to the educational process. LECTORstudio offers three simple and intuitive wizards that aim to guide educators through the sophisticated processes of (i) defining rules that signify inattention and (ii) describing the intervention strategies that should be applied under various educational circumstances. This work presents the functionality of the tool and the usability findings of a heuristic evaluation experiment conducted with UX experts.

Tracking of multiple planar projection boards for interactive mixed-reality applications

P. Koutlemanis, X. Zabulis (2017) Tracking of multiple planar projection boards for interactive mixed-reality applications in Multimedia Tools and Applications, 1-31, Oct, 2017

Abstract

The case of mixed-reality projector-camera systems is considered and, in particular, those which employ hand-held boards as interactive displays. This work focuses upon the accurate, robust, and timely detection and pose estimation of such boards, to achieve high-quality augmentation and interaction. The proposed approach operates a camera in the near infrared spectrum to filter out the optical projection from the sensory input. However, the monochromaticity of input restricts the use of color for the detection of boards. In this context, two methods are proposed. The first regards the pose estimation of boards which, being computationally demanding and frequently used by the system, is highly parallelized. The second uses this pose estimation method to detect and track boards, being efficient in the use of computational resources so that accurate results are provided in real-time. Accurate pose estimation facilitates touch detection upon designated areas on the boards and high-quality projection of visual content upon boards. An implementation of the proposed approach is extensively and quantitatively evaluated, as to its accuracy and efficiency. This evaluation, along with usability and pilot application investigations, indicate the suitability of the proposed approach for use in interactive, mixed-reality applications.

Adaptable, personalizable and multi user museum exhibits

Partarakis, N. , Antona, M. , & Stephanidis, C (2016) Adaptable, personalizable and multi user museum exhibits In Curating the Digital (pp. 167-179). Springer, Cham.

Abstract

Two dimensional paintings were exhibited in museums and art galleries in the same manner since at least three centuries. However, the emergence of novel interactive technologies provides the opportunity to change this status quo. By 2006, according to the Institute for Museum and Library Services, 43 % of museum visits in the U.S. were remote. According to the Institute for the Future, “Emerging technologies are transforming everything that constitutes our notion of “reality” – our ability to sense our surroundings, our capacity to reason, our perception of the world”. In the present age, that technology is becoming mixed to the fabric of reality to offer novel experiences in Cultural Heritage Institutions. This work presents the design and implementation of a technological framework based on ambient intelligence to enhance visitor experiences within Heritage Institutions by augmenting two dimensional paintings. Among the major contributions of this chapter is the support of personalized multi user access to exhibits, facilitating also adaptation mechanisms for altering the interaction style and content based on the requirements of each Heritage Institution’s visitor. A standards compliant knowledge representation and the appropriate authoring tools guarantee the effective integration of this approach in any relevant context. The developed applications have been deployed within a simulation space of the FORTH-ICS AmI facility and evaluated by users in the context of a pilot study.

1 2 3 4 7